<style id="7i3y3"></style>

      <sub id="7i3y3"><i id="7i3y3"></i></sub>

        午夜精品一区二区三区成人,中文字幕av一区二区,亚洲AVAV天堂AV在线网阿V,肥臀浪妇太爽了快点再快点,国产网友愉拍精品视频手机,国产精品无码a∨麻豆,久久中文字幕一区二区,a级国产乱理伦片在线观看al
        中國自動化學會專家咨詢工作委員會指定宣傳媒體
        新聞詳情

        Deep Learning:工業自動化和生產效率的變革者

        http://www.kblhh.cn 2023-11-13 10:16 來源:廣州市西克傳感器有限公司

          Deep Learning 將改變工業。機器將能夠完成那些需要人類智慧的工作。伴隨著企業流程數字化和數據收集的發展,Deep Learning 的應用也將增加,使人類和機器之間的合作更加高效。這將徹底改變自動化和生產,實現更高效且更正確的決策流程以及更高的生產力,同時顯著降低開發成本。

          在我們的播客“SICKnificant”中,我們與數字服務和解決方案戰略產品經理 Christoph Eichhorn 博士探討了 Deep Learning 如何幫助人們完成繁瑣的任務以及提高流程質量。

          Christoph Eichhorn 博士,SICK 數字服務和解決方案的戰略產品經理

          近年來,Deep Learning 作為人工智能和機器學習的一個子領域,隨著數據和計算能力的不斷增加而愈發重要。該技術將為生產自動化和其他領域帶來變革,使機器能夠完成以前需要人類智慧才能完成的任務。SICK 的 AI 解決方案負責人 Christoph Eichhorn 博士這樣解釋:“Deep Learning 是機器學習的一個子領域。為此需要使用能夠處理復雜情況的人工神經網絡,即所謂的‘deep neural networks’。人工神經網絡可以完成例如質量控制領域的復雜決策,幫助企業將越來越多的流程自動化和數字化,從而將生產效率提高到一個新的水平。”

          數字化和人工智能

           

          近年來,工業中的數字化方案發展迅猛。來自傳感器 以及其他來源的數據(過去主要用于直接的流程控制)在數字化過程中被儲存起來,從而可以在更抽象的層面得到應用。但僅僅收集數據是不夠的。當涉及到提取數據的核心信息以進行進一步的優化時,人工智能 發揮了重要作用。

          以木材加工業 的某個應用為例:該應用借助數千兆字節的數據訓練一個神經網絡,其決策比人類的眼睛更高效、更快速、更持久。這個神經網絡的大小不到一兆字節,卻用到了大量的經驗。這個方案可以轉化到任意數量的應用中。

          從基于人工智能的自動化中受益

          當然,并不總是需要如此巨量的數據才能從人工智能中受益。根據客戶的個性化需求,Deep Learning 項目的實施具有很大的差異。擬定這些需求和期望目標并不輕松,但這是成功使用人工智能的先決條件。“簡單來說:只有當你明確了自己的需求時,才能通過人工智能得到想要的結果。一旦清楚了這一點,所有客戶都希望通過一個簡單而靈活的解決方案來解決他們的問題。”Eichhorn 說。

          “在人工智能的幫助下,我們的客戶可以自己實現過去難以實現的自動化任務。典型示例 包括利用反光零件進行質量檢查和裝配檢查、焊點檢查或對天然產品進行分揀。這些工作往往非常繁瑣,需要占用熟練工人的大量寶貴時間,因此通常只能以抽檢的方式進行。”

          訓練人工神經網絡

          隨著 Deep Learning 的廣泛使用,自動化正在經歷顛覆性的變革。今后不再需要為了制定一套具體的規則而去研究哪些細節與決策相關,而是充分利用現有實例。算法學會了自主決策。“我們訓練一個解決方案,而不是對其進行編程,這樣做更加快速且更加高效。但必須強調的是,Deep Learning 不能替代人的專業能力。人的智慧對于充分挖掘技術潛力來說仍是必不可少的。Deep Learning 是對人類能力的輔助和擴展。”Eichhorn 解釋并總結道:“由于 Deep Learning 工具使用簡單,用戶只要知道問題所在,即便沒有專業的編程知識,也可以自行解決。因為只有用戶才知道哪些因素對于解決方案來說是重要的,哪些是不重要的,也只有用戶才能找到更合適的訓練實例。通過我們的工具,用戶可以非常直觀地進行人工智能訓練,從而解決具體的、個性化的任務。”

        版權所有 工控網 Copyright?2025 Gkong.com, All Rights Reserved
        主站蜘蛛池模板: 国产盗摄视频一区二区三区| 亚洲欧洲日韩综合色天使| 日韩高清砖码一二区在线| 亚洲乱理伦片在线观看中字| 日本视频精品一区二区| 国精品午夜福利视频| 国产一区二区不卡在线视频| 国产线播放免费人成视频播放| 国产成人亚洲精品狼色在线| 蜜臀精品视频一区二区三区| 亚洲精品麻豆一二三区| 潮喷失禁大喷水av无码| 亚洲AV成人无码精品电影在线| 亚洲 制服 丝袜 无码 在线| 人妻少妇偷人无码视频| 又色又爽又黄的视频国产| 亚洲成在人线AV品善网好看| аv天堂最新中文在线| 中文字幕精品亚洲字幕成| 日韩人妻少妇一区二区三区| 国产边打电话边被躁视频| 国产99久久无码精品| 视频二区国产精品职场同事| 99精品热在线在线观看视| 又黄又爽又高潮免费毛片| 亚洲嫩模喷白浆在线观看| 欧美制服丝袜人妻另类| 国产老熟女无套内射不卡| 国产在线精品无码二区| 亚洲av精彩一区二区| 国精品无码一区二区三区在线看 | 天天噜噜日日久久综合网| 国产旡码高清一区二区三区| 蜜桃AV抽搐高潮一区二区| 日韩精品欧美高清区| 日日碰狠狠添天天爽超碰97| 丰满的熟妇岳中文字幕| 2023国产一线二线三线区别| 日夜啪啪一区二区三区| 亚洲精品综合网二三区| 亚洲精品麻豆一区二区|