<style id="7i3y3"></style>

      <sub id="7i3y3"><i id="7i3y3"></i></sub>

        午夜精品一区二区三区成人,中文字幕av一区二区,亚洲AVAV天堂AV在线网阿V,肥臀浪妇太爽了快点再快点,国产网友愉拍精品视频手机,国产精品无码a∨麻豆,久久中文字幕一区二区,a级国产乱理伦片在线观看al
        中國自動(dòng)化學(xué)會(huì)專家咨詢工作委員會(huì)指定宣傳媒體
        新聞詳情

        Arm/FPGA聯(lián)手發(fā)威 研華生產(chǎn)線大步邁入AI時(shí)代

        http://www.kblhh.cn 2018-04-18 13:55 來源:研華科技

        2018年4月,臺(tái)北 –人工智能(Artificial Intelligence, AI)無疑是近一兩年來科技產(chǎn)業(yè)內(nèi)最熱門的話題,除了科技業(yè)巨頭無不大力投入之外,金融等服務(wù)業(yè)者對(duì)導(dǎo)入人工智能,也展現(xiàn)出強(qiáng)烈興趣。制造業(yè)對(duì)AI技術(shù)的關(guān)注,也不在話下,并且在相關(guān)關(guān)鍵技術(shù)逐漸到位的情況下,已開始有實(shí)際導(dǎo)入動(dòng)作。

        倡導(dǎo)智能制造不遺余力的研華科技,除了為各行各業(yè)提供對(duì)應(yīng)的先進(jìn)解決方案外,在自家生產(chǎn)在線也開始逐步導(dǎo)入人工智能要素。比如機(jī)臺(tái)設(shè)備的狀態(tài)偵測(cè)/診斷、原物料/能源的使用狀況,乃至產(chǎn)品的品管流程等,均已逐步導(dǎo)入人工智能。安謀(Arm)的硅智財(cái)(IP)與SoC及賽靈思(Xilinx)的現(xiàn)場(chǎng)可編程門陣列(FPGA)技術(shù),則是研華推動(dòng)生產(chǎn)線AI化的兩大得力幫手。

        研華IoT.SENSE采訪研華技術(shù)長楊瑞祥與總廠長林東杰,探討研華在AI、IoT、智能制造等創(chuàng)新浪潮下的解決對(duì)策,以下為專訪摘要:

         QQ截圖20180418135815

        AI進(jìn)化速度驚人 商業(yè)應(yīng)用價(jià)值可觀

        研華科技技術(shù)長楊瑞祥表示,人工智能在學(xué)術(shù)研究領(lǐng)域并非新題目,近兩三年來之所以引發(fā)社會(huì)大眾與各行各業(yè)的廣泛矚目,主要原因在于其進(jìn)化速度實(shí)在太過驚人,并已能創(chuàng)造出龐大的商業(yè)價(jià)值,不再只是個(gè)學(xué)術(shù)研究的題目。

        除了針對(duì)特殊領(lǐng)域外,AI技術(shù)也在追求更高的泛用性。Deepmind最新的棋類程序已經(jīng)把Go(圍棋)拿掉,稱為Alpha。因?yàn)樵摮绦蛞捕孟氯毡緦⑵宓绕渌孱悾⑶医舆B打敗其他世界頂尖的專用棋類程序。這無疑是人工智能泛用性發(fā)展的一個(gè)重要里程碑。

        在快速演化與蘊(yùn)藏龐大商業(yè)價(jià)值的情況下,人工智能成為當(dāng)前最受矚目的科技議題,其實(shí)不令人意外。但討論歸討論,如何在各行各業(yè)導(dǎo)入人工智能,實(shí)現(xiàn)產(chǎn)業(yè)的智能化,還是有很多細(xì)節(jié)問題要克服。

        人工智能增添智能制造動(dòng)能

        以制造業(yè)來說,不管最終制造的產(chǎn)品為何,制造業(yè)總是脫離不了「人、機(jī)、料、法」這四個(gè)元素。人是指員工,機(jī)則泛指各種工具機(jī)臺(tái),料是指各種原物料及能源,法則是制程方法。自工業(yè)革命以來,不管制造業(yè)的產(chǎn)品如何演變,都脫離不了這四個(gè)元素。如何最優(yōu)化地管理好這四個(gè)元素,則是制造業(yè)者每天都要面對(duì)的課題。

        楊瑞祥分析,導(dǎo)入人工智能,最重要的四個(gè)KPI,就是要展現(xiàn)在人工料法的優(yōu)化與改善上。以人來說,如何將老師傅的經(jīng)驗(yàn)變成可量化的參數(shù),進(jìn)而把人的經(jīng)驗(yàn)復(fù)制、擴(kuò)散,就是導(dǎo)入AI的一個(gè)重要目標(biāo)。

        不過,要實(shí)現(xiàn)上述四大優(yōu)化,最重要的還是業(yè)者對(duì)AI的理解程度,以及所搜集到的數(shù)據(jù)集質(zhì)量好壞。首先,制造業(yè)者必須要對(duì)AI有正確的認(rèn)識(shí),知道AI適合用來處理的問題為何,應(yīng)用上又有何限制。其次,AI推論模型的訓(xùn)練成果,除了模型本身的設(shè)計(jì)外,訓(xùn)練數(shù)據(jù)的質(zhì)量也很重要。如果用質(zhì)量有問題的數(shù)據(jù)來訓(xùn)練模型,AI推論的結(jié)果會(huì)跟現(xiàn)實(shí)狀況出現(xiàn)落差。

        最后,組織文化也得有所調(diào)整。在導(dǎo)入AI之前,生產(chǎn)在線的所有決策者都是人,依靠的是過往的經(jīng)驗(yàn);導(dǎo)入AI后,握有最終決定權(quán)的雖然還是人,但不再只憑主觀的感覺或經(jīng)驗(yàn)來判斷,而是相對(duì)客觀的統(tǒng)計(jì)科學(xué)。人跟機(jī)器之間的信賴關(guān)系,需要一段時(shí)間提升。當(dāng)然,AI本身也要持續(xù)進(jìn)化,提升其預(yù)測(cè)的可靠度跟準(zhǔn)確度。

        不同處理器各有所長 Arm架構(gòu)適合推論運(yùn)算

        楊瑞祥進(jìn)一步解釋,人工智能可以分成模型訓(xùn)練(Training)與推論(Inference)兩個(gè)部分。對(duì)生產(chǎn)現(xiàn)場(chǎng)應(yīng)用來說,大多是采用已經(jīng)訓(xùn)練好的模型來執(zhí)行各種推論應(yīng)用,不會(huì)直接在邊緣進(jìn)行模型訓(xùn)練,因?yàn)槟P陀?xùn)練需要強(qiáng)大的運(yùn)算效能跟大量數(shù)據(jù)集,較適合在數(shù)據(jù)中心或云端上進(jìn)行。

        也因?yàn)橥普搶?duì)運(yùn)算效能的需求較低,因此市面上有許多現(xiàn)成的處理器解決方案均能勝任,例如x86 CPU、GPU與基于Arm架構(gòu)的SoC處理器,都可以執(zhí)行相關(guān)運(yùn)算任務(wù),差別只在于成本、耗電量與散熱是否能滿足現(xiàn)場(chǎng)設(shè)備的規(guī)格限制。

        就技術(shù)角度而言,GPU是目前最適合用來進(jìn)行模型訓(xùn)練的處理器架構(gòu),以其執(zhí)行模型推論任務(wù)當(dāng)然也是綽綽有余,但GPU的成本、功耗跟隨之而來的散熱問題,卻是這類處理器在邊緣節(jié)點(diǎn)或現(xiàn)場(chǎng)設(shè)備應(yīng)用上最大的限制。x86 CPU也有很強(qiáng)大的運(yùn)算效能,但由于其架構(gòu)設(shè)計(jì)的目標(biāo)是滿足各種運(yùn)算/控制應(yīng)用,因此在執(zhí)行AI算法時(shí),效率不如GPU。

        楊瑞祥分析,這個(gè)問題跟AI的本質(zhì)有關(guān)。AI通常只會(huì)用少數(shù)幾種指令,甚至單一指令來處理大量數(shù)據(jù)。例如深度學(xué)習(xí)跟卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN),就數(shù)學(xué)的觀點(diǎn)來說就是矩陣運(yùn)算,跟繪圖運(yùn)算十分類似,因此GPU自然在這方面有先天優(yōu)勢(shì)。x86 CPU則長于應(yīng)對(duì)多指令流多數(shù)據(jù)流(Multiple Instruction, Multiple Data, MIMD)的運(yùn)算情境,但遇到數(shù)據(jù)量太過龐大的情況時(shí),就必須靠拉高頻率,或是以多核心及多線程架構(gòu)來應(yīng)對(duì)。

        采用精簡(jiǎn)指令集(RISC)的Arm處理器,先天特性則介于GPU跟x86 CPU之間,加上近幾年Arm處理器的單一指令多數(shù)據(jù)流(Single Instruction, Multiple Data, SIMD)效能不斷強(qiáng)化,因此在執(zhí)行AI運(yùn)算時(shí),更加得心應(yīng)手。雖然目前要以Arm處理器來做模型訓(xùn)練,在效率上還是不能跟GPU相比,但在執(zhí)行推論任務(wù)時(shí),卻是功耗、成本跟效能三者最平衡的方案。

        楊瑞祥透露,近幾年研華跟安謀密切合作,對(duì)安謀的產(chǎn)品發(fā)展藍(lán)圖也有一定的掌握。未來安謀將會(huì)針對(duì)AI運(yùn)算需求推出更特化,效率更好的處理器核心跟周邊IP。這對(duì)于推動(dòng)邊緣運(yùn)算跟AI應(yīng)用的普及,將會(huì)是很大的助力。研華也會(huì)跟安謀繼續(xù)保持密切合作的伙伴關(guān)系。

        邊緣運(yùn)算進(jìn)展神速 人工智能進(jìn)駐制造現(xiàn)場(chǎng)

        緊抓人工料法四大要素,研華已經(jīng)開始以Arm架構(gòu)的SoC跟賽靈思的FPGA模塊為硬件基礎(chǔ),在自家的生產(chǎn)在線逐漸導(dǎo)入人工智能。

        研華科技總廠長林東杰表示,目前研華在生產(chǎn)在線導(dǎo)入AI,已經(jīng)進(jìn)入用AI來協(xié)助判讀原始資料的階段。在工業(yè)物聯(lián)網(wǎng)的時(shí)代,不只個(gè)別生產(chǎn)在線的機(jī)臺(tái)會(huì)產(chǎn)生大量數(shù)據(jù),廠區(qū)的基礎(chǔ)建設(shè)也會(huì)生成可觀的數(shù)據(jù)數(shù)據(jù)量。要用人工來判讀這些數(shù)據(jù)數(shù)據(jù),分析其背后的意義,是沒有時(shí)效性且效益有限的做法。

        最后,由于研華所處的環(huán)境是典型的少量多樣、接單生產(chǎn)型態(tài),跟一般消費(fèi)性產(chǎn)品規(guī)格單一,大量生產(chǎn)有很大的不同,因此生產(chǎn)線的管理也相對(duì)復(fù)雜。這也是研華在導(dǎo)入人工智能時(shí),希望能解決的痛點(diǎn)之一。

        林東杰表示,由于技術(shù)上的限制,目前還無法實(shí)現(xiàn)全面由系統(tǒng)判讀原始數(shù)據(jù)的終極目標(biāo),但這是研華未來努力的方向。

        更具體來說,未來研華的智能制造希望能實(shí)現(xiàn)三大目標(biāo):一、生產(chǎn)設(shè)備的現(xiàn)代化,希望所有的機(jī)臺(tái)設(shè)備都可以支持工業(yè)4.0;二、實(shí)現(xiàn)數(shù)據(jù)采集與軟件的介接,主要是將數(shù)據(jù)介接到制造執(zhí)行系統(tǒng)(MES)、產(chǎn)品生命周期管理(PLM)等系統(tǒng);三、將機(jī)器視覺與深度學(xué)習(xí)進(jìn)一步擴(kuò)大應(yīng)用在品管環(huán)節(jié)中。

        針對(duì)第一點(diǎn),林東杰不諱言,現(xiàn)有機(jī)臺(tái)的升級(jí)跟改造通常要價(jià)不低,特別是在需要原廠提供支持或授權(quán),不能自己動(dòng)手改的情況下。不過,在某些情況下,現(xiàn)有機(jī)臺(tái)透過外掛研華自家開發(fā)的數(shù)據(jù)采集模塊,就已經(jīng)能獲得足夠的參數(shù)數(shù)據(jù)。

        至于在機(jī)器視覺跟深度學(xué)習(xí)的擴(kuò)大導(dǎo)入上,目前研華是與中研院合作,開發(fā)出可檢測(cè)各種不同產(chǎn)品的機(jī)器視覺系統(tǒng)。事實(shí)上,研華使用光學(xué)自動(dòng)檢測(cè)(AOI)已經(jīng)有很長的一段時(shí)間,但現(xiàn)有的AOI系統(tǒng)僅適用于主板、電路板上細(xì)微組件的檢測(cè),不適合用來檢測(cè)終端成品或更大的零部件。

        另一方面,研華產(chǎn)品少量多樣的特性,也使得目前市面上的機(jī)器視覺方案要應(yīng)用在研華的產(chǎn)線,遇到相當(dāng)大的困難。目前市面上的機(jī)器視覺方案多半是為了大量產(chǎn)品的檢測(cè)需求而設(shè)計(jì),但研華的需求是能夠自動(dòng)適應(yīng)各種產(chǎn)品型態(tài)的機(jī)器視覺檢測(cè)方案。因此,研華決定與中研院合作,開發(fā)出客制化的深度學(xué)習(xí)算法,以便讓機(jī)器視覺系統(tǒng)能更聰明地適應(yīng)不同型態(tài)的產(chǎn)品。

        QQ截圖20180418135903

        FPGA模塊實(shí)現(xiàn)機(jī)器視覺算法加速

        而機(jī)器視覺正是FPGA模塊大展身手的舞臺(tái),也是研華FPGA應(yīng)用發(fā)展團(tuán)隊(duì)已經(jīng)做出具體成果的項(xiàng)目之一。透過FPGA模塊,研華可以自由決定哪些影像辨識(shí)的環(huán)節(jié)需要用硬件加速,以提升視覺檢測(cè)系統(tǒng)的運(yùn)作效能。

        楊瑞祥指出,除了CPU跟GPU外,使用專用的硬件加速芯片來提升AI系統(tǒng)效能,理論上也是一條可行的路。不過,目前AI算法還在快速演進(jìn)中,如果采用ASIC,很可能會(huì)追不上技術(shù)發(fā)展的腳步。而FPGA則是效能與彈性的折衷,其運(yùn)算單元的結(jié)構(gòu)可以客制化,來滿足特定算法加速的需求,又因?yàn)榫邆淇删幊绦裕?dāng)算法需要修改或更新的時(shí)候,不用重新開一顆芯片,只要修改設(shè)計(jì)程序代碼即可。

        因此,現(xiàn)階段來看,F(xiàn)PGA是用來實(shí)現(xiàn)AI算法加速的理想方案之一,研華內(nèi)部也已經(jīng)有相當(dāng)成熟的FPGA應(yīng)用開發(fā)團(tuán)隊(duì),未來會(huì)繼續(xù)投資在這項(xiàng)技術(shù)上。

        QQ截圖20180418135917

        Advantech Embedded DTOS FPGA Capability

        據(jù)悉,目前研華科技已有應(yīng)用案例完成合作,更多詳情可咨詢研華服務(wù)專線“400-001-9088”。

        版權(quán)所有 工控網(wǎng) Copyright?2025 Gkong.com, All Rights Reserved
        主站蜘蛛池模板: 中文字幕无码久久一区| 亚洲乱码中文字幕小综合| 99热精品毛片全部国产无缓冲| 亚洲爆乳www无码专区| 91国内精品久久精品一本| 内地自拍三级在线观看| 欧美videosdesexo吹潮| 一区二区三区国产亚洲自拍| 国产精品入口麻豆| 极品人妻少妇一区二区| 精品无码国产日韩制服丝袜| 蜜桃亚洲一区二区三区四| 亚洲av天堂综合网久久| 国产永久免费高清在线| 日本免费人成视频在线观看| 免费人成视频网站在线18| 2019亚洲午夜无码天堂| 疯狂的欧美乱大交另类| 亚洲激情在线一区二区三区 | 国产性天天综合网| 蜜桃av无码免费看永久| 国产精品自在线拍国产| 国产精品67人妻无码久久| 国产精品午睡沙发系列| 亚洲性日韩精品一区二区三区| 四虎影视库国产精品一区| 国产在线98福利播放视频免费| 久女女热精品视频在线观看| 亚洲国产韩国一区二区| 亚洲精品日韩在线观看| 2021久久最新国产精品| 亚洲综合色网一区二区三区| 欧美成人精品一级在线观看| 麻豆蜜桃av蜜臀av色欲av| 国产品精品久久久久中文| 天堂av在线一区二区| 给我免费观看片在线| 青青草视频华人绿色在线| 亚洲卡1卡2卡新区网站| 春雨电影大全免费观看| 华人在线亚洲欧美精品|